Reliable neuronal logic devices from patterned hippocampal cultures
نویسندگان
چکیده
Functional logical microcircuits are an essential building block of computation in the brain. However, single neuronal connections are unreliable, and it is unclear how neuronal ensembles can be constructed to achieve high response fidelity. Here, we show that reliable, mesoscale logical devices can be created in vitro by geometrical design of neural cultures. We control the connections and activity by assembling living neural networks on quasi-one-dimensional configurations. The linear geometry yields reliable transmission lines. Incorporating thin lines creates ‘threshold’ devices and logical ‘AND gates’. Breaking the symmetry of transmission makes neuronal ‘diodes’. All of these function with error rates well below that of a single connection. The von Neumann model of redundancy and error correction accounts well for all of the devices, giving a quantitative estimate for the reliability of a neuronal connection and of threshold devices. These neuronal devices may contribute to the implementation of computation in vitro and, ultimately, to its understanding in vivo.
منابع مشابه
Culturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media
Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملMicrofluidic devices for culturing primary mammalian neurons at low densities.
Microfluidic devices have been used to study high-density cultures of many cell types. Because cell-to-cell signaling is local, however, there exists a need to develop culture systems that sustain small numbers of neurons and enable analyses of the microenvironments. Such cultures are hard to maintain in stable form, and it is difficult to prevent cell death when using primary mammalian neurons...
متن کاملInterplay Activity-connectivity: Dynamics in Patterned Neuronal Cultures
The ability of a neuronal tissue to efficiently process and transmit information depends on both the intrinsic dynamical properties of the neurons and the connectivity between them. One of the few experimental systems where one can vary the connectivity of a neuronal network in a control manner are neuronal cultures [1] (Fig 1a, top). Here we show that, by combining neuronal cultures with diffe...
متن کامل